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Abstract In this paper, we present a new method for deal-
ing with feature subset selection based on fuzzy entropy
measures for handling classification problems. First, we dis-
cretize numeric features to construct the membership func-
tion of each fuzzy set of a feature. Then, we select the
feature subset based on the proposed fuzzy entropy mea-
sure focusing on boundary samples. The proposed method
can select relevant features to get higher average classifi-
cation accuracy rates than the ones selected by the MIFS
method (Battiti, R. in IEEE Trans. Neural Netw. 5(4):537–
550, 1994), the FQI method (De, R.K., et al. in Neural Netw.
12(10):1429–1455, 1999), the OFEI method, Dong-and-
Kothari’s method (Dong, M., Kothari, R. in Pattern Recog-
nit. Lett. 24(9):1215–1225, 2003) and the OFFSS method
(Tsang, E.C.C., et al. in IEEE Trans. Fuzzy Syst. 11(2):202–
213, 2003).

Keywords Fuzzy entropy · Classification problems ·
Feature subset selection · Fuzzy logic · Membership grade

1 Introduction

In recent years, some feature subset selection methods have
been proposed, such as similarity measures [26], gain-
entropies [3], the relevance of features [1], the genetic al-
gorithms method [4], the overall feature evaluation index
(OFEI) [10], the feature quality index (FQI) [10], the mutual
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information-based feature selector (MIFS) [2], classifiabil-
ity measures [12], neuro-fuzzy approaches [11, 20], . . . , etc.
In [12], Dong and Kothari pointed out that the task of fea-
ture subset selection aims to reduce the number of features
used in classification or recognition tasks. It is obvious that
a data set might have irrelevant and relevant features. If we
can properly select relevant features to deal with classifica-
tion problems, we can increase the classification accuracy
rates [5–8].

In this paper, we present a new method for dealing with
feature subset selection based on fuzzy entropy measures
for handling classification problems. First, we discretize nu-
meric features to construct the membership function of each
fuzzy set of a feature. Then, we select the feature subset
based on the proposed fuzzy entropy measure focusing on
boundary samples. We use four different kinds of classi-
fiers (i.e., LMT [17], Naive Bayes [15], SMO [21], and
C4.5 [22]) to compare the average classification accuracy
rates of the proposed feature subset selection method with
the methods used to compare with the proposed method in
the experiments, i.e., the OFFSS method [26], the OFEI
method [10], the FQI method [10], the MIFS method [2]
and Dong-and-Kothari’s method [12], where the Iris data
set, the Breast cancer data set, the Pima Diabetes data set,
the MPG data set, the Cleve data set, the Correlated data
set, the M of N-3-7-10 data set, the Crx data set, the Monk-
1 data set, the Monk-2 data set and the Monk-3 data set
are used in our experiments (Data Source: UCI Reposi-
tory of Machine Learning Databases and Domain Theo-
ries, ftp://ftp.ics.uci.edu/pub/machine-learning-databases/).
The proposed feature subset selection method can select fea-
tures to get higher average classification accuracy rates than
the ones selected by the MIFS method [2], the FQI method
[10], the OFEI method [10], Dong-and-Kothari’s method
[12] and the OFFSS method [26].
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The rest of this paper is organized as follows. In Sect. 2,
we briefly review some entropy measures [16, 18, 19, 24,
27] and propose a new method to calculate the fuzzy en-
tropy of a fuzzy set. In Sect. 3, we present a new method to
calculate the fuzzy entropy of a feature and propose an al-
gorithm to construct the membership function of each fuzzy
set of a feature. In Sect. 4, we present an algorithm for fea-
ture subset selection. In Sect. 5, we use the proposed feature
subset selection algorithm to select feature subsets from dif-
ferent kinds of data sets. We also make some experiments
to compare the average classification accuracy rate of the
features selected by the proposed method with the ones se-
lected by the MIFS method [2], the FQI method [10], the
OFEI method [10], Dong-and-Kothari’s method [12] and the
OFFSS method [26] based on different kinds of classifiers.
The conclusions are discussed in Sect. 6.

2 Fuzzy entropy measures

In this section, we briefly review the existing entropy mea-
sures [16, 18, 19, 24, 27] and propose a new method to cal-
culate the fuzzy entropy of a fuzzy set.

The entropy measure is commonly used in information
theory, where Shannon’s entropy [24] is widely used. It
can be used to characterize the impurity of a collection of
samples. Let X be a discrete random variable with a fi-
nite set containing n elements, where X = {x1, x2, . . . , xn}.
If an element xi occurs with a probability p(xi), then the
amount of information I (xi) associated with xi is defined as
follows:

I (xi) = − log2 p(xi). (1)

The entropy H(X) of X is defined as follows:

H(X) = −
n∑

i=1

p(xi) log2 p(xi), (2)

where n denotes the number of elements and p(xi) denotes
the occurring probability of the element xi .

In [27], Zadeh defined a fuzzy entropy on a fuzzy set Ã

for a finite set X = {x1, x2, . . . , xn} with respect to the prob-
ability distribution P = {p1,p2, . . . , pn}, shown as follows:

H = −
n∑

i=1

μ
Ã
(xi)pi logpi, (3)

where μ
Ã

denotes the membership function of Ã,μ
Ã
(xi)

denotes the grade of membership of xi belonging to the
fuzzy set Ã,pi denotes the probability of xi , and 1 ≤ i ≤ n.

In [19], Luca and Termini defined a fuzzy entropy mea-
sure based on Shannon’s entropy [24]. They presented a set
of axioms for a fuzzy entropy measure. The axioms of a

fuzzy entropy measure are reviewed from [19] as follows.
Assume that A is a fuzzy set defined in the universe of dis-
course X and μA is the membership function of the fuzzy
set A, where μA(x) : X → [0,1],μA(x) indicates the grade
of membership of x belonging to the fuzzy set A, and x ∈ X.
The axioms of a fuzzy entropy measure H(A) of a fuzzy set
A are as follows [19]:

Axiom 1: H(A) = 0 iff A ∈ X is a crisp set.

Axiom 2: H(A) is the maximum iff μA(x) = 0.5,∀x ∈ A.

Axiom 3: if Ã is less fuzzy than B̃ , then H(Ã) ≤ H(B̃).

Axiom 4: H(A) = H(Ac), where Ac = 1 − A, i.e., Ac de-
notes the complement of A.

The fuzzy entropy of a fuzzy set proposed by Luca et al.
is reviewed from [18] as follows:

H = −K

n∑

j=1

[(μA(xj ) logμA(xj ))

+ (1 − μA(xj )) log(1 − μA(xj ))], (4)

where μA denotes the membership function of the fuzzy set
A,μA(xj ) denotes the grade of membership of xj belonging
to the fuzzy set A,1 ≤ j ≤ n and k = 1/n.

In [16], Kosko used the concepts of overlap and underlap
to define a fuzzy entropy H(A) of a fuzzy set A based on
the geometry of hypercube, shown as follows:

H(A) =
∑n

i=1(μA(xi) ∧ μC
A(xi))∑n

i=1(μA(xi) ∨ μC
A(xi))

, (5)

where μA denotes the membership function of the fuzzy set
A,μA(xi) denotes the grade of membership of xi belong-
ing to the fuzzy set A,μC

A(xi) denotes the complement of
μA(xi),1 ≤ i ≤ n,∧ denotes the minimum operator, and ∨
denotes the maximum operator.

In [18], Lee et al. presented a fuzzy entropy measure of
an interval, based on Shannon’s entropy measure [24] and
Luca’s axioms [19]. The fuzzy entropy measure proposed
by Lee et al. is reviewed from [18] as follows. Assume that
a set of samples R is divided into a set C of classes, and
assume that a feature dimension is divided into I intervals.
Let Ã be a fuzzy set defined in a feature dimension, Ri be a
subset of R distributed in the ith interval, and Ric be a subset
of Ri labeled as class c, where c ∈ C. The matching degree
MDc of the samples of class c in the ith interval belonging
to the fuzzy set Ã, where c ∈ C, is defined as follows [18]:

MDc(Ã) =
∑

r∈Ric
μ

Ã
(r)

∑
r∈Ri

μ
Ã
(r)

. (6)
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The fuzzy entropy IFEc(Ã) of the samples of class c in the
ith interval belonging to the fuzzy set Ã, where c ∈ C, is
defined as follows:

IFEc(Ã) = −MDc(Ã) log2 MDc(Ã). (7)

The fuzzy entropy IFE(Ã) of the samples in the ith interval
belonging to the fuzzy set Ã is defined as follows:

IFE(Ã) =
∑

c∈C

IFEc(Ã). (8)

The fuzzy entropy TFEi of the ith interval in a feature di-
mension is defined as follows:

TFEi =
∑

v∈Vi

IFE(v), (9)

where Vi denotes the set of fuzzy sets in the ith interval in a
feature dimension.

In this paper, we present a new fuzzy entropy measure of
a fuzzy set, shown as follows.

Definition 2.1 Assume that a set X of samples is divided
into a set C of classes. The class degree CDc(Ã) of the sam-
ples of class c, where c ∈ C, belonging to the fuzzy set Ã is
defined by:

CDc(Ã) =
∑

x∈Xc
μ

Ã
(x)

∑
x∈X μ

Ã
(x)

, (10)

where Xc denotes the samples of class c, c ∈ C,μ
Ã

denotes
the membership function of the fuzzy set Ã,μ

Ã
(x) denotes

the membership grade of x belonging to the fuzzy set Ã, and
μ

Ã
(x) ∈ [0,1].

Definition 2.2 The fuzzy entropy FEc(Ã) of the samples of
class c, where c ∈ C, belonging to the fuzzy set Ã is defined
as follows:

FEc(Ã) = −CDc(Ã) log2 CDc(Ã). (11)

Definition 2.3 The fuzzy entropy FE(Ã) of a fuzzy set Ã is
defined by:

FE(Ã) =
∑

c∈C

FEc(Ã). (12)

Assume that there is a sample data set shown in Fig. 1,
where the symbols “O” and “X” denote the positive samples
and the negative samples, respectively. The corresponding
fuzzy sets Ã, B̃ and C̃ of feature A are shown in Fig. 2.
The numeric feature A is divided into three intervals I1, I2

and I3 which correspond to the three fuzzy sets Ã, B̃ and C̃,

Fig. 1 The distribution of the samples with two features

Fig. 2 The corresponding fuzzy sets of feature A

respectively, where I1 = [0,2], I2 = [2,4] and I3 = [4,6].
The entropies of the intervals I1 and I2 calculated by Shan-
non’s entropy measure [24] and the proposed fuzzy entropy
measure are calculated as follows.

Based on Shannon’s entropy measure, (i.e., (1–2)), we
can calculate the entropies of the intervals I1 and I2, respec-
tively, shown as follows:

H(I1) = −(p(o) log2 p(o) + p(×) log2 p(×))

= −
(

5

6
× log2

5

6
+ 1

6
× log2

1

6

)
∼= 0.65,

H(I2) = −
(

1

6
× log2

1

6
+ 5

6
× log2

5

6

)
∼= 0.65.

Based on the proposed method (i.e., (10–12)), we can cal-
culate the fuzzy entropies of the fuzzy sets Ã and B̃ , respec-
tively, shown as follows:

(1) Calculate the fuzzy entropy of the fuzzy set Ã:
(i) Calculate the summation of the membership grades

of the samples of each class belonging to the fuzzy
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set Ã:
∑

x∈Xo

μ
Ã
(x) = 0.75 + 1 + 1 + 1 + 1 = 4.75,

∑

x∈X×
μ

Ã
(x) = 0.75.

(ii) Based on (10), calculate the class degree of the sam-
ples of each class belonging to the fuzzy set Ã:

CDo(Ã) = 4.75

4.75 + 0.75
= 4.75

5.5
= 0.864,

CD×(Ã) = 0.75

4.75 + 0.75
= 0.75

5.5
= 0.136.

(iii) Based on (11) and (12), the fuzzy entropy FE(Ã) of
the fuzzy set Ã is calculated as follows:

FE(Ã) = FEo(Ã) + FE×(Ã)

= −(CDo(Ã) log2 CDo(Ã)

+ CD×(Ã) log2 CD×(Ã))

= −
(

4.75

5.5
× log2

4.75

5.5
+ 0.75

5.5
× log2

0.75

5.5

)

∼= 0.575.

(2) Calculate the fuzzy entropy of the fuzzy set B̃:
(i) Calculate the summation of the membership grades

of the samples of each class belonging to the fuzzy set B̃:

∑

x∈Xo

μ
B̃
(x) = 1,

∑

x∈X×
μ

B̃
(x) = 0.25 + 1 + 1 + 1 + 0.75 + 0.75 + 0.25 = 5.

(ii) Based on (10), calculate the class degree of the sam-
ples of each class belonging to the fuzzy set B̃:

CDo(B̃) = 1

1 + 5
= 1

6
= 0.167,

CD×(B̃) = 5

1 + 5
= 5

6
= 0.833.

(iii) Based on (11) and (12), the fuzzy entropy FE(B̃) of
the fuzzy set B̃ is calculated as follows:

FE(B̃) = FEo(B̃) + FE×(B̃)

= −(CDo(B̃) log2 CDo(B̃)

+ CD×(B̃) log2 CD×(B̃))

= −
(

1

6
× log2

1

6
+ 5

6
× log2

5

6

)

∼= 0.65.

From the above results, we can see that Shannon’s en-
tropy of the interval I1 is equal to that of the interval I2

(i.e., it can not distinguish the entropies of the intervals I1

and I2). But the proposed fuzzy entropy measure can indi-
cate that the sample distribution in the interval I2 is more
ambiguous than that in the interval I1.

3 The proposed fuzzy entropy measures of features

In this section, we present a fuzzy entropy measure of a fea-
ture and present an algorithm to construct the membership
function of each fuzzy set of a feature. A feature can be de-
scribed by several linguistic terms [29], where each linguis-
tic term can be represented by a fuzzy set [27] character-
ized by a membership function. The proposed fuzzy entropy
measure of a feature is defined as follows.

Definition 3.1 Fuzzy entropy FFE(f ) of a feature f is de-
fined by:

FFE(f ) =
∑

v∈V

Sv

S
FE(v), (13)

where V denotes the set of fuzzy sets of feature f,FE(v)

denotes the fuzzy entropy of the fuzzy set v,S denotes the
summation of the membership grades of the samples be-
longing to each fuzzy set of the feature f , and Sv denotes
the summation of the membership grades of the samples be-
longing to the fuzzy set v.

There are two categories of features, where the one is
nominal and the other one is numeric. Both of them have
their corresponding membership functions of fuzzy sets.
Each value of a nominal feature can be regarded as a
fuzzy set, where its membership function is defined as fol-
lows:

μu(x) =
{

1, if x = u,

0, otherwise
(14)

where u ∈ U , U denotes a set of values of a nominal fea-
ture, and μu denotes the membership function of the fuzzy
set u. For example, the set of values of the feature “Sex”
is {male, female}. When the value of the feature “Sex” is
“male”, the membership grades are: μmale(male) = 1 and
μfemale(male) = 0.

A numeric feature can be discretized into finite fuzzy
sets. The number of fuzzy sets will affect the result of clas-
sification. Therefore, the discretization of a numeric feature
is an important process. Using unsupervised learning tech-
niques to discretize a numeric feature is a good method,
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Fig. 3 A numeric feature A with fuzzy sets Ã, B̃ and C̃, where the
clusters centers of Ã, B̃ and C̃, are m1, m2 and m3, respectively

where the k-means clustering algorithm [14] is widely used.
In this paper, we apply the k-means clustering algorithm to
generate k cluster centers, where k ≥ 2, and then construct
their corresponding membership functions, where the clus-
ter centers are used as the centers of fuzzy sets, respectively.
Assume that m1, m2 and m3 are the cluster centers of three
clusters of a numeric feature A, respectively. Then, we can
construct their corresponding membership functions of the
fuzzy sets Ã, B̃ and C̃, respectively, as shown in Fig. 3,
where μ

Ã
(0) = 0.5, μ

Ã
(m1) = 1, μ

Ã
(m2) = 0, μ

B̃
(m1) =

0, μ
B̃
(m2) = 1, μ

B̃
(m3) = 0, μ

C̃
(m2) = 1, μ

C̃
(m3) = 0,

and μ
C̃
(Umax) = 0.5.

The fuzzy entropy of a feature decreases when the num-
ber of clusters increases. However, too many clusters could
cause the overfitting problem [23] and reduce their classifi-
cation accuracy rates when they classify new instances [22].
In this paper, we use a threshold value Tc to avoid the over-
fitting problem, where Tc ∈ [0,1]. When the decreasing rate
of the fuzzy entropy of a feature is less than the threshold
value Tc given by the user, we stop increasing the number
of clusters, where the decreasing rate of a fuzzy entropy of
a feature is obtained by subtracting the fuzzy entropy of the
feature calculated by clustering the values of the feature into
k clusters from the fuzzy entropy of the feature calculated by
clustering the values of the feature into k − 1 clusters. In the
following, we present an algorithm to construct the member-
ship functions of the fuzzy sets of a numeric feature, shown
as follows:

Step 1: Initially, set the number k of clusters to 2.
Step 2: Use the k-means clustering algorithm to generate

k cluster centers based on the values of a feature,
where k ≥ 2, shown as follows:
/* assign initial values to the k clusters centers. */
for i = 1 to k do

mi = x i
k
;

repeat

{
/* assign each sample to the cluster which has
the minimum Euclidean distance, where
“arg mink∈K ‖x − mk‖2” returns one of such k that
minimizes the equation ‖x − mk‖2 and “‖ • ‖” de-
notes the Euclidean norm. */
for all x ∈ X

{

i = arg mink∈K ‖x − mk‖2;
Clusteri = Clusteri ∪ {x}

};
/* calculate a new cluster center mi for each clus-
ter, where ni denotes the number of items in the ith
cluster and 1 ≤ i ≤ k. */
for i = 1 to k do

mi =
∑

x∈Clusteri
x

ni
;

} until each cluster is not changed.

Step 3: Construct the membership functions of the fuzzy
sets based on these k cluster centers, respectively,
shown as follows:
/* assign neighbor cluster centers to the ith cluster
center “mi”, where “mL” denotes the left “cluster
center” of mi , “mR” denotes the right “cluster cen-
ter” of mi , “Umin” denotes the minimum value of a
feature, and “Umax” denotes the maximum value of
a feature. */

let mL =
{

Umin − (mi − Umin), if i = 1,

mi−1, otherwise;

let mR =
{

Umax + (Umax − mi), if i = K,

mi+1, otherwise;

/* construct the membership function μvi
of the

fuzzy set vi based on the ith cluster center mi ,
where “Max” denotes maximum operator. */

let μvi
(x) =

⎧
⎪⎨

⎪⎩

Max{1 − mi−x
mi−mL

,0}, if x ≤ mi,

Max{1 − x−mi

mR−mi
,0}, if x > mi.

Step 4: Based on (4–7), calculate the fuzzy entropy of fea-
ture f , shown as follows:
for i = 1 to k do

FE(vi) = ∑
c∈C FEc(vi);

let FFE(f ) = ∑
v∈V

sv

s
FE(v).
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Step 5: If the decreasing rate of the fuzzy entropy of feature
f is larger than the threshold value Tc given by the
user, where Tc ∈ [0,1], then let
k = k +1 and go to Step 2. Otherwise, let k = k −1
and Stop.

4 The proposed feature subset selection algorithm

In this section, we present a new method for feature sub-
set selection. The proposed method uses “boundary sam-
ples” instead of a full set of samples to select the feature
subset. First, we introduce the concept of “boundary sam-
ples”. Then, we define the fuzzy entropy of a feature subset.
Finally, we propose a new algorithm for feature subset se-
lection based on boundary samples.

The feature subset selection problem can be regarded as a
dimension reduction problem [9, 13]. Assume that there is a
two-dimensional feature space as shown in Fig. 4, where the
symbols “O” and “X” denote the positive samples and the
negative samples, respectively. We can reduce Fig. 4 into
two one-dimensional feature spaces as shown in Fig. 5. Di-
mension reduction will increase the entropy of data because
some information will be omitted at the same time. Thus, we
should avoid the decrease of classification accuracy caused
by omitting important features.

In a dimension reduction problem [13], each feature
might have incorrectly classified samples. Thus, an optimal
feature subset is a set of correlated features [15]. It means
that the samples incorrectly classified by a feature could be
correctly classified by other features. “Boundary samples”
are incorrectly classified samples of features, and we should
focus on them for feature subset selection. For example, Ta-
ble 1 shows an example data set with three nominal features,
where the samples incorrectly classified by feature A are
Sample 1, Sample 2 and Sample 5 due to the fact that the
classes of these samples with the same feature value are am-
biguous. Thus, the value of feature A with incorrectly classi-
fied samples is “black”. In the same way, the samples shown

Fig. 4 A two-dimensional feature space with two classes

in Table 1 incorrectly classified by feature B are Sample 2,
Sample 5 and Sample 6. Thus, we can only use Sample 2
and Sample 5 to calculate the entropy of the feature sub-
set {A, B}. Because Sample 1 can be correctly classified by
feature B, it can also be correctly classified by the feature
subset {A, B}. Thus, Sample 1 can be omitted. In the same
way, because Sample 3 and Sample 4 can be correctly classi-
fied by feature A or feature B and Sample 6 can be correctly
classified by feature A, Sample 3, Sample 4 and Sample 6
can also be correctly classified by the feature subset {A, B}.
Thus, Sample 3, Sample 4 and Sample 6 can be omitted, too.
Therefore, we can reduce the number of samples from 6 to
2, i.e., Sample 2 and Sample 5.

A feature subset can be regarded as a collection of fea-
tures. For example, in Table 1, the values of the feature sub-
set {A,B} are {(black, ocean), (black, lake), (black, river),
(white, ocean), (white, lake), (white, river), (red, ocean),
(red, lake), (red, river)). In Table 1, Sample 2 and Sample 5
are called the “boundary samples” due to the fact that when
the values of feature A and feature B of Sample 2 and Sam-
ple 5 are “black” and “lake”, respectively, they get the dif-
ferent labels “positive” and “negative”, respectively. Thus,
we can calculate the entropy of the feature subset {A,B} by
only using the boundary samples, i.e., Sample 2 and Sam-
ple 5. However, we can not use the boundary samples to
calculate the fuzzy entropy of a feature subset directly. We

Fig. 5 Two one-dimensional feature spaces. (a) Feature A is omitted,
(b) Feature B is omitted

Table 1 An example of data set

Sample No. Feature A Feature B Feature C Classes

1 black ocean summer positive

2 black lake winter positive

3 white ocean fall positive

4 red river winter negative

5 black lake fall negative

6 red lake fall negative
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Fig. 6 The samples distribution with two numeric features and two
classes

Fig. 7 The corresponding fuzzy sets of the numeric feature A

can use an indirect method to simplify the feature subset se-
lection process described as follows.

Assume that there is a sample data with two numeric fea-
tures shown in Fig. 6, where the symbols “O” and “X” de-
note the positive samples and the negative samples, respec-
tively. The corresponding fuzzy sets of the numeric feature
A are shown in Fig. 7.

The fuzzy entropies of the fuzzy sets Ã, B̃ and C̃ can be
calculated by (10–12), shown as follows:

(1) Calculate the fuzzy entropy of the fuzzy set Ã:
(i) Calculate the summation of the membership grades

of the samples of each class belonging to the fuzzy set Ã:
∑

x∈Xo

μ
Ã
(x) = 0,

∑

x∈X×
μ

Ã
(x) = 1 + 1 + 1 + 1 + 1 + 0.5 + 0.5 = 6.

(ii) Based on (10), calculate the class degree of the sam-
ples of each class belonging to the fuzzy set Ã:

CDo(Ã) = 0

0 + 6
= 0

6
= 0,

CD×(Ã) = 6

0 + 6
= 6

6
= 1.

(iii) Based on (11) and (12), the fuzzy entropy FE(Ã) of
the fuzzy set Ã is calculated as follows:

FE(Ã) = FEo(Ã) + FE×(Ã)

= −(CDo(Ã) log2 CDo(Ã)

+ CD×(Ã) log2 CD×(Ã))

= −(0 × log2 0 + 1 × log2 1) = 0.

(2) Calculate the fuzzy entropy of the fuzzy set B̃:
(i) Calculate the summation of the membership grades

of the samples of each class belonging to the fuzzy set B̃:
∑

x∈Xo

μ
B̃
(x) = 1 + 1 + 0.5 + 0.5 = 3,

∑

x∈X×
μ

B̃
(x) = 0.5 + 0.5 + 1 + 1 = 3.

(ii) Based on (10), calculate the class degree of the sam-
ples of each class belonging to the fuzzy set B̃:

CDo(B̃) = 3

3 + 3
= 3

6
= 0.5,

CD×(B̃) = 3

3 + 3
= 3

6
= 0.5.

(iii) Based on (11) and (12), the fuzzy entropy FE(B̃) of
the fuzzy set B̃ is calculated as follows:

FE(B̃) = FEo(B̃) + FE×(B̃)

= −(CDo(B̃) log2 CDo(B̃)

+ CD×(B̃) log2 CD×(B̃))

= −
(

3

6
× log2

3

6
+ 3

6
× log2

3

6

)
= 1.

(3) Calculate the fuzzy entropy of the fuzzy set C̃:
(i) Calculate the summation of the membership grades

of the samples of each class belonging to the fuzzy set C̃:
∑

x∈Xo

μ
C̃
(x) = 0.5 + 0.5 + 1 + 1 = 3,

∑

x∈X×
μ

C̃
(x) = 1 + 1 + 0.5 + 0.5 = 3.

(ii) Based on (10), calculate the class degree of the sam-
ples of each class belonging to the fuzzy set C̃:

CDo(C̃) = 3

3 + 3
= 3

6
= 0.5,

CD×(C̃) = 3

3 + 3
= 3

6
= 0.5.
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(iii) Based on (11) and (12), the fuzzy entropy FE(C̃) of
the fuzzy set C̃ is calculated as follows:

FE(C̃) = FEo(C̃) + FE×(C̃)

= −(CDo(C̃) log2 CDo(C̃)

+ CD×(C̃) log2 CD×(C̃))

= −
(

3

6
× log2

3

6
+ 3

6
× log2

3

6

)

= 1.

From Fig. 6, we can see that the samples whose values of
feature A are smaller than uA3 can be correctly classified by
feature A. If we omit the samples whose values of feature A
are smaller than uA3, then it will affect the fuzzy entropy of
the fuzzy set B̃ . Therefore, we must use a indirect method
to calculate the fuzzy entropy of a feature subset by focus-
ing on boundary samples. While we calculate the fuzzy en-
tropy of a feature subset, we omit the fuzzy sets having lower
fuzzy entropies. Thus, in the previous example, we can omit
the fuzzy set Ã to calculate the fuzzy entropy of the feature
subset {A,B}.

In this paper, we use a threshold value Tr , where Tr ∈
[0,1], to omit the fuzzy sets of a feature whose maximum
class degree is larger than or equal to the threshold value
Tr given by the user for feature subset selection. Accord-
ing to Definition 2.1, we can see that there are n “class
degrees” of a set of samples belonging to a fuzzy set with
respect to n classes, respectively. The maximum class de-
gree of a fuzzy set is defined as the maximum among these
n “class degrees”. If the maximum class degree of a fuzzy
set is larger than or equal to the given threshold value Tr ,
where Tr ∈ [0,1], then the fuzzy set will be omitted to re-
duce the number of fuzzy sets of the feature. Then, we can
construct the extension matrix of the membership grades of
the values of a feature subset. Before we do this, we have to
construct the extension matrices of all the features. The ex-
tension matrix of the membership grades of the values of a
feature belonging to the fuzzy sets of this feature is defined
as follows.

Definition 4.1 The extension matrix EMf of the member-
ship grades of the values of a feature f belonging to fuzzy
sets of this feature is defined as follows:

EMf =
⎡

⎢⎣
μv1(r1f ) · · · μvm(r1f )

...
...

...

μv1(rnf ) · · · μvm(rnf )

⎤

⎥⎦

n×m

, (15)

where n denotes the number of samples, m denotes the num-
ber of fuzzy sets of the feature f , μvz(rpf ) denotes the
membership grade of the value rpf of the feature f of the
sample rp belonging to the fuzzy set vz, 1 ≤ p ≤ n, and
1 ≤ z ≤ m.

Let EMf [g,h] denote the element at row g and column h

of an extension matrix EMf , where 1 ≤ g ≤ n, n denotes the
number of samples, 1 ≤ h ≤ m, and m denotes the number
of fuzzy sets of a feature f . According to Definition 4.1, we
can see that the membership grade μvz(rpf ) of the value rpf

of the feature f of the sample rp belonging to the fuzzy set
vz is stored at row p and column z of an extension matrix
EMf (i.e., EMf [p, z]). Then, the class degree CDc(v) of a
set of samples can be calculated from the extension matrix
EMf of membership grades of the values of a feature f ,
defined as follows.

Definition 4.2 The class degree CDc(v) of the samples of
class c belonging to the fuzzy set v, is defined as follows:

CDc(v) =
∑

r∈Rc
EMf [|r|, |v|]

∑
r∈R EMf [|r|, |v|] , (16)

where R denotes a set of samples, Rc denotes the samples
of class c in R, |r| denotes the number of the sample r , 1 ≤
|r| ≤ n, n denotes the number of samples, |v| denotes the
number of the fuzzy set v, 1 ≤ |v| ≤ m, and m denotes the
number of fuzzy sets of the feature f . (Note: The pth sample
is mapped into the pth row of the extension matrix EMf

and the zth fuzzy set of the feature f is mapped into the zth
column of the extension matrix EMf .)

The fuzzy entropy FFE(f ) of a feature f can be calcu-
lated by Definition 2.2, Definition 2.3, Definition 3.1 and
Definition 4.2, shown as follows:

FFE(f ) =
∑

v∈V

[
sv

s
×

∑

c∈C

(−CDc(v) log2 CDc(v))

]
. (17)

In the following, we propose a “combined-extension-
matrix function” for constructing the extension matrix of the
membership grades of the values of a feature subset. As-
sume that there are a set of samples with two features f1

and f2, n denotes the number of samples, Tr denotes a max-
imum class degree threshold value given by the user, where
Tr ∈ [0,1], i denotes the number of fuzzy sets of the feature
f1 whose maximum class degree is smaller than the given
threshold value Tr , j denotes the number of fuzzy sets of
the feature f2 whose maximum class degree is smaller than
the given threshold value Tr,μv1x

(rpf1) denotes the mem-
bership grade of the value rpf1 of the feature f1 of the sam-
ple rp belonging to a fuzzy set v1x of the feature f1, where
1 ≤ x ≤ i, and μv2y

(rpf2) denotes the membership grade of
the value rpf2 of the feature f2 of the sample rp belonging
to a fuzzy set v2y of the feature f2, where 1 ≤ y ≤ j . Let
“μv1x

(rpf1) ∧ μv2y
(rpf2)” denote the membership grade of

the values of the feature subset {f1, f2} of the sample rp
belonging to the combined fuzzy set “v1x∧2y” of the fea-
ture subset {f1, f2}, where ∧ denotes the minimum opera-
tor. The proposed “combined-extension-matrix function” is
shown as follows.
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Definition 4.3 The combined extension matrix function
CEM(f1,f2,Tr ) for constructing the extension matrix of the
membership grades of the values of a feature subset {f1, f2}

belonging to the combined fuzzy sets of this feature subset
according to the maximum class degree threshold value Tr

given by the user, where Tr ∈ [0,1], is defined by:

CEM(f1, f2, Tr )

=
⎡

⎢⎣
μv11(r1f1) ∧ μv21(r1f2) · · · μv11(r1f1) ∧ μv2j(r1f2) · · · μv1i(r1f1) ∧ μv21(r1f2) · · · μv1i(r1f1) ∧ μv2j(r1f2)

...
...

...
...

...
...

...

μv11(rnf1) ∧ μv21(rnf2) · · · μv11(rnf1) ∧ μv2j(rnf2) · · · μv1i(rnf1) ∧ μv21(rnf2) · · · μv1i(rnf1) ∧ μv2j(rnf2)

⎤

⎥⎦

n×ij

. (18)

Based on the extension matrix of the membership grades
of the values of a feature subset belonging to the combined
fuzzy sets of this feature subset, the class degree of the sam-
ples of a class belonging to a combined fuzzy set of a feature
subset can be calculated by (16). Then, the fuzzy entropy of
the samples of a class belonging to a combined fuzzy set of
a feature subset and the fuzzy entropy of a combined fuzzy
set of a feature subset can be calculated by (11) and (12),
respectively. Then, we propose a fuzzy entropy measure of
a feature subset focusing on boundary samples, shown as
follows.

Definition 4.4 The fuzzy entropy measure BSFFE(f1, f2)

of a feature subset {f1, f2} focusing on boundary samples is
defined as follows:

BSFFE(f1, f2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1B

S1
× ∑

w∈VFS

Sw

SFS
FE(w)

+ ∑
v1∈V1UB

Sv1
S1

FE(v1),

if S1B

S1
< S2B

S2
,

S2B

S2
× ∑

w∈VFS

Sw

SFS
FE(w)

+ ∑
v2∈V2UB

Sv2
S2

FE(v2),

otherwise

(19)

where S1 denotes the summation of the membership grades
of the values of the feature f1 of the samples belonging to
each fuzzy set of the feature f1, S1B denotes the summa-
tion of the membership grades of the values of the feature
f1 of the samples belonging to the fuzzy sets of the fea-
ture f1 whose maximum class degree is smaller than the
threshold value Tr given by the user, where Tr ∈ [0,1],VFS

denotes the set of combined fuzzy sets of the feature sub-
set {f1, f2}, SFS denotes the summation of the membership
grades of the values of the feature subset {f1, f2} of the sam-
ples belonging to each combined fuzzy set of the feature
subset {f1, f2}, Sw denotes the summation of the member-
ship grades of the values of the feature subset {f1, f2} of the

samples belonging to a combined fuzzy set w,FE(w) de-
notes the fuzzy entropy of a combined fuzzy set w,V1UB de-
notes the set of fuzzy sets of the feature f1 whose maximum
class degree is larger than or equal to the threshold value
Tr, Sv1 denotes the summation of the membership grades of
the values of the feature f1 of the samples belonging to a
fuzzy set v1 of the feature f1, and FE(v1) denotes the fuzzy
entropy of a fuzzy set v1 of the feature f1. Moreover, S2 de-
notes the summation of the membership grades of the values
of the feature f2 of the samples belonging to the fuzzy sets
of the feature f2, S2B denotes the summation of the mem-
bership grades of the values of the feature f2 of the samples
belonging to the fuzzy sets of the feature f2 whose max-
imum class degree is smaller than the threshold value Tr

given by the user, where Tr ∈ [0,1],V2UB denotes the set of
fuzzy sets of the feature f2 whose maximum class degree
is larger than or equal to the threshold value Tr, Sv2 denotes
the summation of the membership grades of the values of
the feature f2 of the samples belonging to a fuzzy set v2 of
the feature f2, and FE(v2) denotes the fuzzy entropy of a
fuzzy set v2 of the feature f2.

Assume that a set R of samples is divided into a set C of
classes, where R = {r1, r2, . . . , rn},F denotes a set of can-
didate features and FS denotes the selected feature subset.
The proposed algorithm for feature subset selection is now
presented as follows:

Step 1: /* Construct the extension matrix EMf of the mem-
bership grades of the values of each feature f be-
longing to fuzzy sets of each feature f and calcu-
late the fuzzy entropy FFE(f ) of each feature f ,
respectively. */
for each f ∈ F do
{
Based on (15), construct the extension matrix EMf

of the membership grades of the values of the fea-
ture f belonging to the fuzzy sets of the feature f ,
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shown as follows:

EMf =
⎡

⎢⎣
μv1(r1 f ) · · · μvm(r1 f )

...
...

...

μv1(rnf ) · · · μvm(rn f )

⎤

⎥⎦

n×m

;

based on (16), calculate the class degree CDc(v) of
the samples of each class c belonging to each fuzzy
set v of the feature f , where c ∈ C;
based on (11) and (12), calculate the fuzzy entropy
FE(v) of each fuzzy set v of the feature f ;
based on (13), calculate the fuzzy entropy FFE(f )

of the feature f

}.
Step 2: /* Put the feature with the minimum fuzzy entropy

into the selected feature subset FS and remove it
from the set F of candidate features. */
let f̂ = arg minf ∈F FFE(f ), where the symbol
“arg minf ∈F FFE(f )” returns one of such a fea-
ture f that minimizes the function FFE(f ).
let EFS = FFE(f̂ );
let FS = {f̂ };
let F = F − {f̂ }.

Step 3: /* Repeatedly put the feature which can reduce the
fuzzy entropy of the feature subset into FS until no
such a feature exists. */
repeat
{
for each f ∈ F do
{
based on (18), construct the extension matrix
EMFS∪{f } of membership grades of the values
of the feature subset FS ∪{f } according to the
maximum class degree threshold value Tr given
by the user, where Tr ∈ [0,1], shown as follows:
EMFS∪{f } = CEM(FS, f, Tr);
based on (16), calculate the class degree CDc(v) of
the samples of each class c belonging to each com-
bined fuzzy set v of the feature subset FS ∪{f },
where c ∈ C; based on (11) and (12), calculate the
fuzzy entropy FE(v) of each combined fuzzy set v

of the feature subset FS ∪{f };
based on (19), calculate the fuzzy entropy BSFFE
(FS, f ) of the feature subset FS ∪{f } focusing on
boundary samples
};
let f̂ = arg minf ∈F BSFFE(FS, f ), where the sym-
bol “arg minf ∈F BSFFE(FS, f )” returns one of
such a feature f that minimizes the function
BSFFE(FS, f );

let D = EFS − BSFFE(FS, f̂ );
let EFS = BSFFE(FS, f̂ );
let FS = FS ∪ {f̂ };
let F = F − {f̂ }
} until (EFS = 0 or D ≤ 0 or F = φ);
let FS be the selected feature subset.

5 Experimental results

We have implemented the proposed method by using
IBM Lotus Notes Version 4.6 (http://www-306.ibm.com/
software/lotus/) on a Pentium 4 PC and have made two
experiments, where four different kinds of classifiers (i.e.,
LMT [17], Naive Bayes [15], SMO [21], and C4.5 [22])
are used in the experiments. The first experiment uses
four different kinds of UCI data sets (ftp://ftp.ics.uci.edu/
pub/machine-learning-databases/), i.e., the Iris data set, the
breast cancer data set, the Pima diabetes data set, and the
MPG data set, for comparing the average classification ac-
curacy rate of the features selected by the proposed method
with the ones selected by the OFFSS method [26], the
OFEI method [10], the FQI method [10] and the MIFS
method [2], respectively. The second experiment uses eight
different kinds of UCI data sets (ftp://ftp.ics.uci.edu/pub/
machine-learning-databases/), i.e., the Pima diabetes data
set, the Cleve data set, the Correlated data set, the M of N-
3-7-10 data set, the Crx data set, the Monk-1 data set, the
Monk-2 data set and the Monk-3 data set, for comparing
the average classification accuracy rate of the features se-
lected by the proposed method with the ones selected by
the method presented in [12]. These two experiments are
discussed as follows:

(1) The First Experiment: The Iris data set, the Breast
cancer data set, the Pima Diabetes data set, and the MPG
data set are used in this experiment. First, we apply the pro-
posed method to select feature subsets of these four data sets
(i.e., the Iris data set, the Breast cancer data set, the Pima Di-
abetes data set and the MPG data set), respectively. The pro-
posed method consists of two major steps. The first step de-
fines the corresponding membership function of each fuzzy
set of each feature. The second step select feature subsets
based on the proposed fuzzy entropy measure focusing on

Table 2 The threshold value Tc and Tr used in the proposed method

Data sets The threshold The threshold

value Tc value Tr

Iris data set 0.2 0.9

Breast cancer data set 0.1 0.9

Pima diabetes data set 0.2 0.75

MPG data set 0.03 0.6
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Table 3 A comparison of
feature subsets selected by
different methods

Data sets Feature subsets selected by different methods

OFFSS OFEI FQI MIFS The proposed

method

Iris data set {4, 3} {4, 3} {4, 3} {4, 3} {4, 3}

Breast cancer data set {6, 3, 1, 2} {6, 1, 3, 2} {6, 1, 8, 3} {6, 3, 2, 7} {6, 2, 1, 8, 5, 3}

Pima diabetes data set {2, 6, 7} {2, 3, 6} {8, 2, 1} {2, 6, 8} {2, 6, 8, 7}

MPG data set {6, 2, 5, 4} {4, 5, 6, 2} {4, 6, 3, 2} {4, 6, 2, 1} {4, 6, 3}

Table 4 A comparison of the average classification accuracy rates of different methods

Data sets Classifiers Average classification accuracy rates of different methods

OFFSS OFEI FQI MIFS The proposed

method

Iris data set LMT 94.67 ± 4.27% 94.67 ± 4.27% 94.67 ± 4.27% 94.67 ± 4.27% 94.67 ± 4.27%

Naive Bayes 96.00 ± 4.00% 96.00 ± 4.00% 96.00 ± 4.00% 96.00 ± 4.00% 96.00 ± 4.00%

SMO 96.00 ± 4.00% 96.00 ± 4.00% 96.00 ± 4.00% 96.00 ± 4.00% 96.00 ± 4.00%

C4.5 96.00 ± 5.33% 96.00 ± 5.33% 96.00 ± 5.33% 96.00 ± 5.33% 96.00 ± 5.33%

Breast cancer data set LMT 95.90 ± 2.15% 95.90 ± 2.15% 96.49 ± 2.09% 95.46 ± 1.79% 96.49 ± 2.08%

Naive Bayes 96.19 ± 2.56% 96.19 ± 2.56% 96.49 ± 1.88% 95.31 ± 1.58% 96.63 ± 1.97%

SMO 96.34 ± 2.19% 96.34 ± 2.19% 97.07 ± 1.85% 96.05 ± 2.62% 97.07 ± 2.27%

C4.5 95.61 ± 2.70% 95.61 ± 2.70% 96.93 ± 1.90% 95.16 ± 2.86% 96.02 ± 2.57%

Pima diabetes data set LMT 76.83 ± 3.79% 76.04 ± 3.63% 73.56 ± 4.68% 75.53 ± 4.39% 77.22 ± 4.52%

Naive Bayes 76.57 ± 3.65% 76.83 ± 4.36% 74.09 ± 5.43% 76.44 ± 5.50% 77.47 ± 4.93%

SMO 75.91 ± 4.96% 75.91 ± 3.80% 75.39 ± 4.93% 75.91 ± 4.97% 77.08 ± 5.06%

C4.5 75.01 ± 3.72% 74.36 ± 4.27% 71.74 ± 3.18% 74.61 ± 4.86% 74.88 ± 5.89%

MPG data set LMT 81.13 ± 5.67% 81.13 ± 5.67% 82.38 ± 7.28% 84.17 ± 7.26% 81.87 ± 6.74%

Naive Bayes 78.31 ± 7.63% 78.31 ± 7.63% 79.59 ± 6.79% 76.28 ± 8.25% 80.60 ± 7.01%

SMO 80.58 ± 7.21% 80.58 ± 7.21% 81.61 ± 6.99% 76.77 ± 4.12% 81.86 ± 8.25%

C4.5 79.83 ± 7.84% 79.83 ± 7.84% 79.58 ± 8.24% 81.37 ± 9.05% 79.93 ± 7.78%

Note: All results are reported as mean ± standard deviation computed from 10 independent trials

Table 5 The threshold values Tc and Tr used in the proposed method

Data sets The threshold The threshold

value Tc value Tr

Pima diabetes data set 0.2 0.75

Cleve data set 0.001 0.8

Correlated data set N/A 0.95

M of N-3-7-10 data set N/A 0.9

Crx data set 0.001 0.7

Monk-1 data set N/A 0.9

Monk-2 data set N/A 0.6

Monk-3 data set N/A 0.95

Note: Because the features of the Correlated Data Set, the M of N-3-7-
10 data set, the Monk-1 data set, the Monk-2 data set and the Monk-3
data set are nominal, the threshold Values Tc of these five data sets are
not applied, denoted by the symbol “N/A”

boundary samples. The threshold value Tc used in the pro-
posed algorithm for constructing the membership functions

of the fuzzy sets of a numeric feature and the threshold value
Tr used in the proposed algorithm for feature subset selec-
tion is shown in Table 2. A comparison of the experimental
results of the feature subset selection for different methods
is shown in Table 3.

Then, we use four different kinds of classifiers (i.e., LMT
[17], Naive Bayes [15], SMO [21], and C4.5 [22]) to evalu-
ate the performance of the selected feature subsets by dif-
ferent methods. We make the experiment in the environ-
ment of the free software Weka (http://www.cs.waikato.ac.
nz/ml/weka/) on a Pentium 4 PC, where we use Weka to
select different kinds of classifiers and different data sets
with respect to the selected features by different methods.
We apply the 10-fold cross-validation to the four data sets to
get the average classification accuracy rates of different fea-
ture selection methods with respect to different classifiers
as shown in Table 4. In the 10-fold cross-validation, we di-
vide each data set into 10 subsets of approximately equal
size and execute 10 times. Each time we select one of the
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Table 6 A comparison of
feature subsets selected by
Dong-and-Kothari’s method and
the proposed method

Data sets Feature subsets selected by different methods

Dong-and-Kothari’s method The proposed method

Pima diabetes data set {2, 8, 1} {2, 6, 8, 7}

Cleve data set {10, 13, 12, 3, 9} {13, 3, 12, 11, 1, 10, 2, 5, 6}

Correlated data set {6, 1, 2, 3, 4} {6, 1, 2, 3, 4}

M of N-3-7-10 data set {4, 9, 5, 8, 3, 6, 7} {4, 9, 8, 5, 3, 6, 7}

Crx data set {8, 9, 13, 10} {9}

Monk-1 data set {5, 1, 2} {5, 1, 2}

Monk-2 data set {3, 6, 1, 2, 4, 5} {5}

Monk-3 data set {2, 5, 4, 1} {5, 2, 4}

Table 7 A comparison of the
average classification accuracy
rates of Dong-and-Kothari’s
method with the proposed
method

Note: All results are reported as
mean ± standard deviation
computed from 10 independent
trials

Data sets Classifiers Average classification accuracy rates of

different methods

Dong-and-Kothari’s The proposed method

method

Pima diabetes data set LMT 73.56 ± 4.68% 77.22 ± 4.52%

Naive Bayes 73.43 ± 1.57% 77.47 ± 4.93%

SMO 75.39 ± 4.93% 77.08 ± 5.06%

C4.5 71.74 ± 3.18% 74.88 ± 5.89%

Cleve data set LMT 83.17 ± 4.24% 82.87 ± 6.23%

Naive Bayes 84.17 ± 1.82% 84.48 ± 3.93%

SMO 84.47 ± 5.59% 83.51 ± 6.09%

C4.5 76.90 ± 8.71% 76.90 ± 8.40%

Correlated data set LMT 100.00 ± 0.00% 100.00 ± 0.00%

Naive Bayes 86.03 ± 3.75% 86.03 ± 3.75%

SMO 89.87 ± 6.88% 89.87 ± 6.88%

C4.5 94.62 ± 4.54% 94.62 ± 4.54%

M of N-3-7-10 data set LMT 100.00 ± 0.00% 100.00 ± 0.00%

Naive Bayes 89.33 ± 1.56% 89.33 ± 1.56%

SMO 100.00 ± 0.00% 100.00 ± 0.00%

C4.5 100.00 ± 0.00% 100.00 ± 0.00%

Crx data set LMT 85.22 ± 4.04% 85.22 ± 4.04%

Naive Bayes 84.06 ± 1.33% 85.51 ± 4.25%

SMO 85.80 ± 3.71% 85.80 ± 3.71%

C4.5 85.36 ± 4.12% 85.51 ± 4.25%

Monk-1 data set LMT 100.00 ± 0.00% 100.00 ± 0.00%

Naive Bayes 74.97 ± 1.95% 74.97 ± 1.95%

SMO 75.02 ± 5.66% 75.02 ± 5.66%

C4.5 100.00 ± 0.00% 100.00 ± 0.00%

Monk-2 data set LMT 67.36 ± 1.17% 67.36 ± 1.17%

Naive Bayes 66.22 ± 2.80% 67.14 ± 0.61%

SMO 67.14 ± 0.61% 67.14 ± 0.61%

C4.5 67.14 ± 0.61% 67.14 ± 0.61%

Monk-3 data set LMT 99.77 ± 0.10% 99.77 ± 0.10%

Naive Bayes 97.22 ± 0.47% 97.21 ± 2.71%

SMO 100.00 ± 0.00% 100.00 ± 0.00%

C4.5 100.00 ± 0.00% 100.00 ± 0.00%
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10 subsets as the testing data set and train the classifier by
the remaining 9 subsets to get the classification accuracy rate
with respect to each selected feature subset. After execut-
ing 10 times, we can get the average classification accuracy
rate. From Table 4, we can see that the proposed method
can select features to get higher average classification accu-
racy rates than the ones selected by the OFFSS method [26],
the OFEI method [10], the FQI method [10] and the MIFS
method [2].

(2) The Second Experiment: The Pima Diabetes data set,
the Cleve data set, the Correlated data set, the M of N-3-
7-10 data set, the Crx data set, the Monk-1 data set, the
Monk-2 data set and the Monk-3 data set are used in this
experiment. We apply the proposed method to select feature
subsets from these eight data sets (i.e., the Pima diabetes
data set, the Cleve data set, the Correlated data set, the M
of N-3-7-10 data set, the Crx data set, the Monk-1 data set,
the Monk-2 data set and the Monk-3 data set), respectively.
The threshold value Tc used in the proposed algorithm for
constructing the membership functions of the fuzzy sets of a
numeric feature and the threshold value Tr used in the pro-
posed algorithm for feature subset selection are shown in
Table 5. A comparison of the results of the feature subset
selection of Dong-and-Kothari’s method [12] and the pro-
posed method is shown in Table 6.

We use four different kinds of classifiers (i.e., LMT
[17], Naive Bayes [15], SMO [21], and C4.5 [22]) to com-
pare the average classification accuracy rates based on the
features selected by the method proposed by Dong and
Kothari [12] and the proposed method. We make the ex-
periment in the environment of the free software Weka
(http://www.cs.waikato.ac.nz/ml/weka/) on a Pentium 4 PC
and apply the 10-fold cross-validation to the eight data sets
to get the average classification accuracy rates as shown in
Table 7. From Table 7, we can see that the proposed method
can select features to get higher average classification ac-
curacy rates than the ones selected by Dong-and-Kothari’s
method [12].

6 Conclusions

In this paper, we have presented a new method for fea-
ture subset selection based on the proposed fuzzy entropy
measure for handling classification problems. The proposed
method can deal with both numeric and nominal features.
From the experimental results shown in Table 4 and Ta-
ble 7, we can see that the proposed method can select rel-
evant features to get higher average classification accuracy
rates than the ones selected by the OFFSS method [26], the
OFEI method [10], the FQI method [10], the MIFS method
[2] and Dong-and-Kothari’s method [12] with respect to dif-
ferent kinds of classifiers. In this paper, we use the k-means

clustering algorithm to discrete the numeric features. In the
future, we will investigate the effect of feature selection if
other discretization methods are used.
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